Tetrahedron Letters,Vol.30,No.52,pp 7407-7410,1989 D040-4039/89 \$3.00 + .00 Printed in Great Britain Pergamon Press plc

REDUCTIVE COUPLINGS OF ACID CHLORIDES MEDIATED BY Sml2

J.COLLIN, F. DALLEMER, J.L. NAMY, H.B. KAGAN\*.

Laboratoire de Synthèse Asymétrique Associé au CNRS, Institut de Chimie Moléculaire d'Orsay. Université Paris-Sud, 91405 Orsay, France.

<u>Summary</u> : Reductive couplings of acid chlorides and of acid chlorides with aldehydes or ketones in presence of an excess of  $SmI_2$  produce ketones in moderate to good yields.

We have previously investigated the reactivity of various acid chlorides in the presence of diiodosamarium. For example we discovered decarbonylation of  $\alpha$ -alkoxyacid chlorides and double cyclisation reactions<sup>1,2</sup>. We also reported that two equivalents of SmI<sub>2</sub> can achieve coupling of arylic acid chlorides into  $\alpha$ -diketones, coupling of aliphatic acid chlorides into  $\alpha$ -ketols (reaction [1])<sup>3</sup> and condensation of acid chlorides with aldehydes or ketones into  $\alpha$ -ketols (reaction [3])<sup>4</sup>. We wish to report here that in the presence of an excess of SmI<sub>2</sub> ketones are obtained in both cases instead of ketols.

Aliphatic acid chlorides <u>1</u> are transformed at room temperature, with an excess of SmI<sub>2</sub> ( four equivalents ), directly into ketone <u>3</u> in good yields (60-80%) within a few hours ( reaction [2], Table I ). For example to a stirred solution of SmI<sub>2</sub> 0.1 N in THF ( 80 mL, 8 mmol ) was slowly added a solution of cyclohexylcarboxylic acid chloride ( 293 mg, 2 mmol ) in THF (10 mL). After 0.5 hour at room temperature the reaction mixture was yet blue , due to excess of SmI<sub>2</sub> , and was quenched with HCl 0.1N and treated as previously described<sup>4</sup>. Ketone <u>3c</u> is isolated ( 166 mg ) in 80 % yield.



We found that acid chlorides react with aldehydes and ketones at room temperature with an excess of  $SmI_2$  (usually five equivalents ) allowing the direct formation of ketones 5 (reaction [4], see Table II). In the standard procedure a solution of acid chloride in THF is slowly added to the mixture of  $SmI_2$  and ketone, for example citronellic acid chloride ( 375 mg, 2 mmol, in 10 mL THF) to decanone ( 234 mg, 3 mmol ) and  $SmI_2$  (100 mL, 0.1 N, 10 mmol ). After 18 h at room temperature and usual workup, ketone <u>5d</u> ( 172 mg, 56 % ) is isolated.



In the case of 5a a 80:20 mixture of isomeric ketones 4-dodecanone and 3-dodecanone is obtained. Amount of 4-dodecanone increases by using an excess of propanal. Diphenyl carbamoyl chloride is reactive towards cyclohexanone, leading to amide <u>5f</u>. Inanaga reported that HMPA accelerates various transformations mediated by  $SmI_2^5$ . For our reactions addition of HMPA increases the rate of formation of ketones but also the amount of by-products and seems useless.

|           | R             | t(h) <sup>a</sup> | Isolated yield % |
|-----------|---------------|-------------------|------------------|
| <u>3a</u> | 1-Adamantyl   | 1 <sup>b</sup>    | 60               |
| <u>3b</u> | $n-C_8H_{17}$ | 18                | 60               |
| <u>3c</u> | Cyclohexyl    | 0.5               | 80               |
| <u>3d</u> | -<~-<~        | 18                | 73°              |

TABLE I : FORMATION OF KETONES 3 RC(0)CH2R

a) Reactions in THF at room temperature except(b), 4 equiv. SmI<sub>2</sub>. b) Reaction at 60°C.

c) 90:10 mixture of diastereomers.

TABLE II : FORMATION OF KETONES 5  $RC(0)CH(R^1)(R^2)$ 

|           | R                 | R <sup>1</sup> , R <sup>2</sup>    | t(h) <sup>a</sup> | Isolated yield % |
|-----------|-------------------|------------------------------------|-------------------|------------------|
| <u>5a</u> | n-C8H17           | н, сн <sub>2</sub> сн <sub>3</sub> | 0.75              | 70 <sup>b</sup>  |
| <u>5b</u> | n-C8H17           | -(CH2)5-                           | 5                 | 62               |
| <u>5c</u> | CH3               | -(CH <sub>2</sub> )5-              | 0.3               | 30               |
| <u>5d</u> | -{~~{             | CH3, (CH2)7CH3                     | 16                | 56°              |
| <u>5e</u> | Ph                | $CH_3$ , $CH=C(CH_3)_2$            | 18                | 30d              |
| <u>5f</u> | Ph <sub>2</sub> N | -(CH <sub>2</sub> )5-              | 100               | 49               |

a) Reactions in THF at room temperature, 5 equiv. SmI2.

b) 4-Dodecanone: 3-dodecanone : 80:20.

c) 50:50 mixture of diastereomers.

d) Conjugated ketone is not observed.

During the course of formation of ketones  $\underline{3}$  and  $\underline{5}$ , G.C. analysis of aliquots of the reaction mixture show that ketols  $\underline{2}$  and  $\underline{4}$  respectively are first formed and then reduced by SmI<sub>2</sub>. We checked that reduction of the ketol  $\underline{4b}$  ( R = n-C<sub>8</sub>H<sub>17</sub>, R<sup>1</sup>COR<sup>2</sup> = cyclohexanone ) occurs when using three equivalents of SmI<sub>2</sub> and also leads to ketone  $\underline{5b}$  in 82% yield<sup>6</sup>.

Several mechanisms can be postulated to explain formation of 5. Previous studies of reactions of acid chlorides with  $SmI_2^4$  as well as with SmCp2<sup>10</sup> have shown acyl samarium are transient species in the reaction of divalent samarium compounds with acid chlorides. Involvement of a samarium enolate seems to be ruled out as no incorporation of deuterium in ketone 5b after deuterolysis has been noticed. The reaction mixture was also unreactive towards tert-butyl dimethyl chlorosilane and product 5b was recovered after mild hydrolysis. We propose that the acyl samarium species 6 reacts with ketone leading to samarium ketolate  $\underline{7}$  which after further reaction with SmI<sub>2</sub> eliminates SmI20SmI2 with direct formation of a-keto radical 8 which abstracts H from THF ( Scheme I).



A tentative mechanism for the formation of ketones  $\underline{3}$  is depicted in Scheme II. Acyl samarium species  $\underline{6}$  under its carbenoid form duplicates giving an enediclate intermediate  $\underline{9}$ . Such coupling of formyl complexes have been found for some samarium compounds<sup>11</sup>. As no incorporation of deuterium on ketol  $\underline{2a}$  (R = 1-adamantyl) has been observed after deuterolysis of the reaction mixture, we suggest the enediclate is in equilibrium with a samarium ketolate  $\underline{10}$ . In the latter the samarium carbon bond is cleaved by THF. The last step should involve an  $\alpha$ -keto radical which abstracts hydrogen from THF. This assumption is supported by the absence of deuterium incorporation in ketone  $\underline{3a}$  after deuterolysis.



SCHEME II

The present work allows a one pot synthesis of ketones in mild conditions. Scope and mechanism of the reactions [2] and [3] are under investigation.

## REFERENCES and NOTES

| (1)                       | M. Sasaki, J. Collin and H.B. Kagan, <u>Tetrahedron Lett</u> . 1988, <u>38</u> , 4847.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2)                       | M. Sasaki, J. Collin and H.B. Kagan, <u>Tetrahedron Lett</u> . <b>1988</b> , <u>38</u> , 6105.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (3)                       | P. Girard, R. Couffignal and H.B. Kagan, <u>Tetrahedron Lett.</u> , 1981 22, 3959.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (4)                       | J. Souppe, J.L. Namy and H.B. Kagan, <u>Tetrahedron Lett</u> ., 1984, 27, 2869.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (5)                       | M. Matsukawa, T. Tabuchi, J. Inanaga, M. Yamaguchi, <u>Chem</u> .<br>Lett., <b>1987</b> , 2101.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (6)                       | The reduction of $\alpha$ -hetero substituted ketones by SmI <sub>2</sub> has alrea-<br>dy been described. Molander and Hahn have reduced protected $\alpha$ -<br>hydroxy ketones in different conditions (THF / MeOH, -78°C),<br>yields are low with unprotected OH <sup>7</sup> . Holton and Williams report<br>such reductions in the course of synthesis of tricyclic keto-<br>nes <sup>8</sup> . Small amount of $\alpha$ -phenyl acetophenone was observed du-<br>ring asymmetric reduction of benzil by SmI <sub>2</sub> / guinidine <sup>9</sup> . |
| (7)<br>(8)<br>(9)<br>(10) | G. Molander and G. Hahn, <u>J. Org. Chem.</u> , <b>1986</b> , <u>51</u> , 1135.<br>R. Holton and A. Williams, <u>J. Org. Chem.</u> , <b>1988</b> , <u>53</u> , <u>5983</u> .<br>S. Takeuchi, Y. Ohgo, <u>Chem. Lett</u> . <b>1988</b> , 403.<br>J. Collin, J.L. Namy and H.B. Kagan, unpublished results.                                                                                                                                                                                                                                                  |
| (11)                      | W.J. Evans, J.W. Grate. R.J. Doedens, <u>J.Am. Chem. Soc</u> . 1985, <u>107</u> , 1671.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

(Received in France 3 November 1989)